

Easy
Striders
Traditional two-legged robots usually walk in a stiff and unnatural manner. New, surprisingly simple mechanics now give the humanoids a more elegant and also more efficient gait.

Before it moves, the robot doesn't look like much. A rickety bundle of metal plates and rods standing on two thin legs, it resembles a science fair project more than it does a major advance in technology. Only two small motors, some simple wiring at its hip, and two batteries weigh it down. Then, with a slight push off one heel, the robot steps forward and ambles along with a remarkably human gait.

This graceful stride differs radically from the stiff, unnatural motion of traditional two-legged robots. Not only that, says its co-creator Andy Ruina of Cornell University, but the walker uses a small fraction of the energy required by other two-legged machines, and it runs on a control system no more complex than that of a coffee machine. In fact, Ruina says, this slender, one-metre-tall robot, simple as it looks, introduces a new class of robotics based on the theory known as passive dynamics.

The principles of passive-dynamic walking emerged in the late 1980s, pioneered by roboticist Tad McGeer. While at Simon Fraser University in Burnaby, British Columbia, McGeer showed that a humanlike frame can walk itself down a slope without requiring muscles or motors. Unlike traditional robots, which guzzle energy by using motors to control every motion, McGeer's early passive-dynamic robots relied only on gravity and the natural swinging of their limbs to move forward.
"It's taken 10 to 15 years for McGeer's impact to really sink in," says prosthetics researcher Art Kuo of the University of Michigan in Ann Arbor. "It was such a novel thing." Now, he says a 'movement' has begun. Although McGeer's entirely passive robot could walk only downhill, a new generation of related, mostly passive, machines uses small motors to navigate flat ground. Some roboticists still see these robots as toys that can't handle complex
tasks. Others see them as a step toward more sophisticated machines.

An increasing number of researchers say that the energy-efficient walkers are providing insight into human locomotion. Such devices may inspire new prosthetic-limb designs and eventually move robotics closer to science fiction's popular vision of ambulatory humanoids.
McGeer learned how to build robots by thinking about how planes fly. Trained as an aerospace engineer, he moved into robotics because he felt he'd missed taking part in the major advances that had transformed flight technology in the 1950s and 1960s. "For me, walking machines were an unexpected diversion," he says.

McGeer became interested in robot locomotion after some of his colleagues at Simon Fraser University had developed a concept for a crawling robot "with all sorts of muscles," he says. "It struck me as all rather complicated." Because of his aerospace background, McGeer then thought of how the Wright brothers pioneered flight. They had explored how an airborne plane might maintain stability and control by experimenting with a series of unpowered gliders, which eventually stayed aloft while travelling over 1,000 feet off the ground. McGeer realized that such an approach, focused on equilibrium and mechanics, might work equally well for bipedal robots.

Searching the Perfect Gait

McGeer also knew of a concept called ballistic walking, developed by Harvard roboticist Thomas McMahon in 1980. Inspired by a simple walking toy called a Wilson Walkee, a penguin-shaped, unpowered gadget that could toddle down a slope on two legs, McMahon and his student Simon Mochan calculated that a walker could take a single step using no energy after an initial activation. In their model, a leg behaves like a pendulum that swings passively until the body leans forward and the foot strikes the ground.

In a series of seminar papers, McGeer extended McMahon's concept. He calculated that a walker could not only take one step without energy beyond the initial nudge but could also execute the entire walking cycle powered only by gravity. The downhill-walking cycle, he found, was passive and repeatable - even, remarkably, if the walker bent its knees. "I could write down these formulae that said you could build a machine that looks like this and it will walk by itself," he says. "Intuition said
that seems pretty far-fetched." Intuition proved wrong. McGeer succeeded in building a passive walker that could march downhill while bending and straightening its knees. However, the simple robot cheated slightly by relying on four, rather than two, legs to maintain side-toside stability.

Striding Sticks and Hinges

When McGeer left academia for industry, another outsider to robotics picked up where he'd left off. Ruina had started his career as a geophysicist but became interested in mechanical engineering when someone in his lab insisted on studying bicycle mechanics. Ruina took a sabbatical to learn more about biomechanics, encountered McGeer's work, and was hooked.

Vokabelownload unter wnw.engine-magazin delextras	
stride, to	schreiten
gait - gäit	Gang
rickety	klapprig, wackelig
resemble, to	ähneln
advance	Fortschritt
hip	Hüfte
heel	Ferse
amble, to	schlendern, trotten
fraction	Bruchteil
slender	schlank
roboticist - robotißißt	Robotingenieur
slope	Gefälle, Hang
guzzle, to •gas	fressen, schlucken
rely on, to	sich verlassen auf
limb	Glied
prosthetics - proß日etik	Prothesetechnik
locomotion	Bewegung
ambulatory - ämbjolətəri	gehfähig
humanoid	menschenähnlich
diversion	Ablenkung
airborne	fliegend
aloft	in der Höhe, hoch oben
equilibrium • ihkwilibriem	Gleichgewicht
bipedal - beipihdl	zweifüßig
gadget	Vorrichtung, Apparat
toddle, to	watscheln, schwanken
pendulum • pendjolam	Pendel
nudge \cdot nadsch	Stoß
far-fetched	weit hergeholt
cheat, to	mogeln
maintain, to	bewahren
hinge \cdot hindsch	Gelenk, Scharnier
academia	die akademische Welt
insist, to	beharren, bestehen auf
sabbatical * ßebätikl	Sabbatjahr
encounter, to	auf etwas stoßen
hooked	total begeistert

engine Lautschrift

Unsere vereinfachte Lautschrift orientiert sich an der deutschen Aussprache und wird gesprochen, wie sie geschrieben wird.
Betonten Silben sind
fett gedruckt. Leider geht es nicht ganz ohne Sonderzeichen:
$\theta=$ stimmloses th wie in "thank you"
б = stimmhaftes th wie in "the"
$\boldsymbol{\theta}=$ kurzes, unbetontes e wie in "danke"
$\boldsymbol{0}=$ langes, offenes o wie in "hoffen"

The Wilson Walkie rampwalking toy patented by John Wilson in 1938 inspired Thomas Mc Mahon to develop one of the first ballistic walkers in 1980.

http://
ruina.tam.cornell.edu/ research
Andy Ruinas Aktivitäten am Biorobotics and Locomotion Lab der Cornell University
http://mms.tudelft.nl/dbl/ research/biped
Das Biorobotics Lab der TU Delft mit vielen Informationen, Bildern und Videos von Denise und ihren Vorgängern

www.personal.engin.

umich.edu/~artkuo
Webseite von Art Kuo zum
Thema mechanisches Gehen
http://world.honda.com/

ASIMO

Hondas kleiner Asimo
ist derzeit wohl der menschenähnlichste aller Roboter
www.theworld.org/ technology/robots Beitrag der BBC zum Thema mit Audiolink zu einer Radioreportage
www.bea.hi-ho.ne.jp/ meeco/biped/bipede.html Bauanleitung für einen Walker aus Lego

Ruina and his students soon began developing passive-dynamic walkers that could navigate a slope on two legs instead of four. In 2001, undergraduates Martijn Wisse and Steve Collins put together "some sticks and hinges," Ruina says, to build a more advanced version that he still describes as "the nicest, best passive-dynamic walker that's out there." The walker ambled downhill with a comfortable, humanlike stride. "People were sort of confused because lots of people have made robots and no one has made one walk so nicely," Ruina says.

Still, the robot could only walk down a slope. So, Ruina and several colleagues at the Massachusetts Institute of Technology and Delft University in the Netherlands decided to prove that robots developed from passivedynamic principles could, with the strategic addition of some motors, walk on flat ground.

The new robots rely on carefully designed mechanical tricks to walk while using extremely little energy. For instance, in the Cornell model, which was built first and is more energy efficient than the MIT and Delft robots, a single motor at the hip winds up a spring at the ankle of the robot's planted leg. When the robot's other leg strikes the ground ahead, an electrical signal back to the motor releases the

Honda's Asimo robot is probably the most advanced humanoid robot to date. It walks, runs, climbs stairs and dances. But in contrast to the passive walkers, it uses brute force and a multitude of electric motors consuming a lot of power.
spring, which pushes the ankle of the planted leg upward to start the next step. This mimics a person, who steps by pushing up from the ball of the foot, Ruina says.

Motor-Intensive Movement

Compare this with the movement of Honda's Asimo robot, perhaps the most capable bipedal robot ever created. A computer-controlled motor sits at each of Asimo's 26 joints, directing the full trajectory of joint motion. This complete control enables the robot to walk, shake hands, climb stairs, kick a ball, and even run.

But Asimo pays a price for its virtuosity. The motors make the robot stiff and unwieldy. When the motors are turned off, each joint freezes in place, so even joints that don't need power in a given motion must be activated. Asimo must also lug around its full collection of heavy motors, gears, and electronics. The robot's large battery needs recharging every 45 minutes.

In contrast to the motor-intensive robots, the new walkers based on the passive-dynamic theory achieve an energy efficiency similar to that of a human being. Mathematically, a person's or a robot's energetic cost of transport equals the energy expended to move the walker's body weight a certain distance.

When walking, both an average person and the Cornell robot have a cost of transport of about 0.05 , a unitless quantity based on work performed over a distance. The Delft robot, nicknamed Denise, uses pneumatic devices at the hip to power its walking and has a higher cost of 0.08 . The person and these robots all achieve 10 to 20 times the energy efficiency of Asimo, however. Collins has estimated Asimo's cost of transport while walking at 1.6.

Wisse, now at Delft University, admits that passive-dynamic robots can't match Asimo's capabilities. But he says that Asimo consumes extra energy because, for example, the robot is controlled by algorithms that require it to walk flat-footed, without rolling up on its toes as a person might when walking. Wisse plans to continue research to make Denise less likely to topple over. He's also working on making the robot start, stop, and turn, since it currently needs a push to get moving, keeps going until it runs into something, and walks only in a straight line.

Meanwhile, Ruina says that he's still working on energy efficiency. "I'm a flower child, it's a hippie thing," he says. "During my formative years, I got the idea that the world
was wasting energy." Aside from the moral high ground, energy efficiency has crucial practical importance, Ruina and others assert. "Once a robot is unplugged from the wall, once an animal is free to roam, either way, it's got to carry its energy supply with it," Kuo says. People typically engage in activity for half a day before stopping to power up with a meal. Robotics researchers hope to emulate this stamina. Moreover, since people naturally minimize their energy usage, it makes sense that principles driving passive-dynamic motion could explain human walking, says Collins. The most immediate practical application of passive-dynamic robotics, he says, lies in understanding how people move.

Easy Walking is Hard

Strolling along might feel easy, but researchers have long struggled to understand walking. That's partly because human locomotion depends on so many joints, including the knee, ankle, and hip, says roboticist Jerry Pratt of the Institute for Human and Machine Cognition in Pensacola, Fla. Each joint behaves differently, and a roboticist must decide how

ankle	Fußgelenk, Knöchel
appealing	reizend
assert, to	beteuern, versichern,
behaupten, bestätigen	
capability	Fähigkeit
cop-out	Ausrede
crucial kruhschl	entscheidend, wichtig
determinant • ditöminant	Bestimmungsgröße
emit, to	ausstrahlen
expend, to	aufwenden, ausgeben
formative	prägend, formend
immediate	unmittelbar, direkt
implication	Auswirkung, Folge
intriguing • intrihging	faszinierend
lug, to \cdot lag	schleppen
mimic, to	nachahmen
notion	Auffassung, Ansicht
planted leg	Standbein
release, to	lösen
roam, to	streunen,
herumwandern	
spring	Feder
stamina • ßtämina	Durchhaltevermögen
stroll, to	schlendern, spazieren
gehen	
struggle, to	kämpfen, ringen
toe	Zeh
topple, to	fallen, kippen
trajectory	Bewegungsablauf
unwieldy • anwihldi	schwerfälig

to control the movement at each one. "There are a lot of things that make walking hard, but instead of using that as a cop-out, most guys involved in the field of passive-dynamic walkers try to look more at what makes it easy," says Pratt. Permitting the leg to swing like a pendulum, for example, simplifies the task.

Kuo says that passive-dynamic walking has challenged a commonly held notion of how people walk called the "six determinants of gait." This theory, developed in the 1950s, asserts that a person minimizes energy by using six ambulatory tactics to keep his or her centre of gravity as level as possible. But Kuo says that both people walking normally and the new-style robotic walkers move their centres of gravity up and down. More information on human walking, he says, will lead to new prosthetic devices for people who have lost lower limbs.

Besides their implications for prostheses and improved robotics, the walkers built by Ruina and his colleagues have another intriguing aspect. In their gaits, which are so strikingly similar to human walking, the robots emit an appealing charm.

Naila Moreira

A lady's elegance: Passivedynamic walker Denise uses pneumatic devices at the hip to stroll along the corridors of Delft University.

Dieser Artikel erschien ursprünglich in Science News, Vol. 168, No. 6, 2005, und wird hier mit freundlicher Genehmigung von Science Service veröffentlicht. Der vollständige Beitrag findet sich unter
www.sciencenews.org

